

[image: C:\xampp\htdocs\elearning\exam\includes\image\logo_ok-removebg-preview.png]


Promuex Inc. (Canada) Global Professional Certificate. 

"Preparing for the Promuex Inc. Global Professional Certificate: Essential Knowledge and Skills Checklist"
[bookmark: _GoBack]Overview: The Promuex Inc. (Canada) Global Professional Certificate recognizes expertise across specialized fields like AI, cybersecurity, healthcare, and finance. To excel, you’ll need foundational skills, knowledge of industry tools, and practical experience. Here’s what to focus on before certification:
Instruction plan : Systems Architecture
Course Overview
The Systems Architecture course provides participants with a deep understanding of modern architectural patterns, including Microservices, Event-Driven Architectures, Distributed Systems, and Serverless technologies. By combining theoretical insights with practical implementations, this course enables participants to design scalable, resilient, and efficient systems. Real-world STAR (Situation, Task, Action, Result) examples will contextualize key concepts.

Course Objectives
By the end of this course, participants will:
1. Understand the principles and benefits of Microservices Architecture.
2. Explore Event-Driven Architecture and implement solutions using Apache Kafka.
3. Design and optimize Distributed Systems for high availability and performance.
4. Learn Serverless Architecture fundamentals and use cloud platforms for hands-on projects.
5. Apply architectural patterns to real-world scenarios for scalable application design.

Course Structure

Module 1: Microservices Architecture
· Objective: Introduce the Microservices paradigm and its role in building modular, scalable systems.
· Topics Covered:
· What are Microservices? Benefits and challenges.
· Designing and deploying microservices.
· Inter-service communication with REST and gRPC.
· STAR Example:
· Situation: A large retailer needed to decouple its monolithic inventory management system.
· Task: Increase system scalability and flexibility.
· Action: Migrated to a Microservices Architecture, separating inventory, order, and payment modules.
· Result: Reduced deployment times by 40% and increased system scalability for peak shopping periods.
· Learning Activity:
· Build a basic e-commerce application using multiple microservices for product, user, and order management.
· Assignment:
· Design a service diagram and API schema for a microservices-based social media platform.

Module 2: Event-Driven Architecture with Kafka
· Objective: Understand Event-Driven Architecture and its application using Apache Kafka.
· Topics Covered:
· Principles of Event-Driven Architecture.
· Using Kafka as an event broker.
· Designing event streams and event sourcing.
· STAR Example:
· Situation: A ride-hailing service needed to process millions of real-time events from drivers and riders.
· Task: Implement a robust event-processing system.
· Action: Integrated Apache Kafka to handle location updates, ride requests, and notifications.
· Result: Improved real-time processing efficiency by 60%.
· Learning Activity:
· Set up a Kafka cluster and create producers and consumers for a real-time notification system.
· Assignment:
· Design an event-driven architecture for a food delivery app with event streams for orders, payments, and delivery tracking.

Module 3: Distributed Systems Design
· Objective: Learn how to design and optimize distributed systems for scalability and fault tolerance.
· Topics Covered:
· What are Distributed Systems? Characteristics and challenges.
· Consistency models and CAP theorem.
· Load balancing, fault tolerance, and replication.
· STAR Example:
· Situation: A global video streaming platform faced challenges with service availability during peak traffic.
· Task: Enhance system performance and reliability.
· Action: Designed a distributed system with load balancing and content replication across regions.
· Result: Achieved 99.99% uptime and reduced latency by 35%.
· Learning Activity:
· Simulate a distributed key-value store and implement basic replication.
· Assignment:
· Design a distributed architecture for a cloud-based file storage system.

Module 4: Serverless Architecture Fundamentals
· Objective: Explore Serverless Architecture and its benefits for agile application development.
· Topics Covered:
· What is Serverless? Concepts and use cases.
· Building serverless applications using AWS Lambda, Azure Functions, and Google Cloud Functions.
· Pros and cons of serverless models.
· STAR Example:
· Situation: A startup wanted to reduce infrastructure costs for its customer engagement system.
· Task: Scale the application cost-effectively without managing servers.
· Action: Adopted AWS Lambda for running customer notification services.
· Result: Reduced infrastructure costs by 50% and achieved instant scalability.
· Learning Activity:
· Create a serverless function to process real-time user feedback in an application.
· Assignment:
· Develop a serverless backend for a chat application, including event triggers and real-time message handling.

Conclusion
The Systems Architecture course equips participants with the knowledge and skills to design, implement, and manage modern software architectures. By mastering Microservices, Event-Driven patterns, Distributed Systems, and Serverless technologies, participants will be prepared to tackle real-world challenges in industries such as e-commerce, finance, and entertainment. The hands-on assignments and STAR examples ensure practical understanding, empowering participants to build scalable, reliable, and efficient systems for today’s dynamic technological landscape.

Promuex Inc. Canada (https://promuex.ca/)

image1.png




image2.png




